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In the present work we examine in detail the formation of a depletion zone in the trapping reaction in
networks, with a single perfect trap. We monitor the particle density ��r� with respect to the distance r from the
trap. We show using Monte Carlo simulations that the depletion zone is absent in regular, Erdos-Renyi �ER�,
and scale-free �SF� networks. The density profiles show significant differences for these cases. The particles are
homogeneously distributed in regular and ER networks with the depletion effect appearing in very sparse ER
networks. In SF networks we reveal the important role of the hubs, which due to their high random walk
centrality are critical in the trapping reaction. In addition, the degree distribution plays a significant role in the
distribution of the particles recovering the depletion zone formation for high � values. The mean connectivity
of the network is found to play a significant role in both ER and SF networks.
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I. INTRODUCTION

In recent years there has been a considerable amount of
interest in investigating diffusion using models of random
walks �1–3�. The systems which have recently attracted in-
terest for studying their properties are complex networks
�4,5� particularly in the diffusion-reaction scheme �6–11�.
These networks include communication networks such as the
Internet, social networks, networks of collaboration between
scientists, transport networks, gene regulatory networks, and
many other examples in biology, sociology, economics, and
even linguistics.

This interest has emerged because it became apparent that
these properties are very different in comparison to lattices.
For example, in the annihilation reaction of one-kind it was
shown that the well known depletion zone in lattices does
not appear in networks �8,12�. Similarly, for the two-kind
reaction the formation of segregation of the two kinds of
reactants does not appear in scale-free networks �8,13�.

In the present work we examine in detail the formation of
a depletion zone in the trapping reaction in networks. Since
scale-free networks are thought of as systems of infinite di-
mensionality, it is also expected here that trapping behaves
differently than the well known case in lattices. In graph
theory, the Erdos-Renyi model �14� is used to generate ran-
dom graphs by taking N nodes and introducing a link be-
tween them with a probability p. This yields �in the limit N
→�� a Poisson distribution �for p�1� of the degree k of the
node: P�k�= ��k�k /k!�e−�k� with �k�= p�N−1�. When p=1, all
possible links exist and this construction gives the complete
graph, where each site is connected to all the other sites in
the graph.

Scale-free �SF� networks have been widely studied during
the recent years since they describe many real-world struc-
tures �4,5,15,16�. This class of networks is defined by having
a degree distribution which follows a power law P�k��k−�,
where � is a parameter which controls the broadness of the

distribution and is characteristic of the structure of the net-
work. Another important parameter in the construction of the
network is m or kmin, which indicates the minimum number
of links a node can have and plays a large role in the con-
nectivity of the network.

SF networks, termed after the absence of characteristic
typical node connectivity, exhibit many unusual properties
compared to simple lattice models, random graphs, or even
small-world �Watts-Strogatz� networks �6�. This scale-free
character results in the existence of a small number of super-
connected nodes �termed hubs� which have been shown to
have a central role in the interpretation of many of the net-
work properties. A lot of work has been devoted in the lit-
erature to the study of static properties of the networks, while
interest is growing for dynamical properties.

II. RANDOM WALKS AND TRAPPING

An important process related to random walk theory is
trapping. Trapping reactions have been widely studied in the
frame of physical chemistry as part of the general reaction-
diffusion scheme. The trapping reaction can be formulated as
A+T→T, where T is a static trap and A is a diffusing species
that may be annihilated upon collision with the trap depend-
ing on the trap strength. This corresponds to the original
Smoluchowski work on coagulation, a process involving the
trapping of mobile particles A by stationary aggregates B,
which became the basis for classical reaction theory �17�.

Over the years a lot of work has been devoted to the
trapping problem which, even in its simplest form, was
shown to yield a rich variety of results, with diverse behavior
over different geometries, dimensions, and time regimes
�1,2,18,19�. The quantity that is usually monitored for such a
process is the survival probability ��n ,c�, which denotes the
probability that a particle A survives after performing n steps
in a space which includes traps with a concentration c. The
problem was studied in regular lattices and in fractal spaces
�1,18–21� and recently in small-world �9�, Erdos-Renyi �11�,
and scale-free networks �6,11�.

In the trapping reaction in low dimensions, the occurrence
of A-T reactions creates a depletion zone around the trap,
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which is a form of self-segregation of reactants �22�. The
growth of the depletion zone in the trapping reaction in low
dimensions leads to anomalous kinetics for a variety of dy-
namic quantities. A number of studies have been devoted to
the problem of the depletion zone in the vicinity of a single
trap �22–30�. Among many possible quantities to character-
ize the dynamics of the depletion zone is the so-called �
distance �r��, which is defined as the distance from the trap T
to the point where the concentration of the reactants A
reaches a given arbitrary fraction �0���1� of its initial
value �22,23�.

The � distance has been shown, by theory �19,30� and
experiment �25�, to increase asymptotically as t1/2 in one
dimension �1D�. The t1/2 dependence in 1D is explained on
the basis of diffusion of particles toward the trap. In three
dimensions, the depletion zone stays localized in the
asymptotic time limit and hence the � distance is time inde-
pendent. The two-dimensional �2D� case produces the most
intriguing result of nonuniversality for the � distance, which
is theoretically predicted to scale as t�/2 at the long-time
limit, namely, it depends on the seemingly arbitrary choice of
�. Experimental work and computer simulations have veri-
fied this behavior �22–25�.

The aim of this work is to study the problem of trapping
in networks, which is an analog to the propagation of infor-
mation in a network. This information is in the form of
“packets,” e.g., like the data packets used in communication
networks in routers, which receive and transmit packets over
a communication network. A trap acts as a node which is
malfunctioning and where the information is lost, e.g., like a
router which can receive but not transmit data due to a mal-
function or an e-mail server unable to forward incoming
mails. Furthermore, the model may be relevant to social sys-
tems, where some information may initially spread ran-
domly, but in later stages it might be held by certain indi-
viduals.

The particle density ��t�, which represents the fraction of
particles left on the network, has been studied in �11�. This,
however, provides no information of how the particles are
distributed on the network and in relation to the location of
the trap. Here we study the distribution of the particles for
various network types, connectivity patterns, and trap loca-
tions. We model the diffusion of particles with many random
walkers and a single perfect trap placed on a random node or
a node with a specific degree. We use Monte Carlo simula-
tions.

III. MODEL

ER networks are generated in the following manner:
given a finite set of N isolated nodes, all the N�N−1� /2 pairs
of nodes are considered and a link between two nodes is
added with probability p. The construction of an SF network
follows the standard configuration model �31,32�. This
model introduces correlations in the range 2��	3, which
are, however, present in most real-world networks �33�. First,
we fix the number of nodes N in the system and the � pa-
rameter of the particular network and each node i is assigned
a number of links ki from the k−� distribution. The value of k

lies in the range from kmin or m �m being typically in the
range of 1–3� to kmax=N−1 �no upper cutoff value is used
for k�.

Initially no links are established in the system. Each node
i extends ki “hands” toward all other nodes. We randomly
select two such hands �that do not belong in the same node�
and connect them, thus creating a link. No double links are
allowed, so if two nodes are already connected this link is
rejected. We continue this process until all nodes have
reached their preassigned connectivity. However, it is pos-
sible that in the last stages of the construction we will reach
a dead end where no further links may be established accord-
ing to the above rules. In this case we simply ignore the
extending hands that cannot be connected, since their num-
ber is always very small and they generally do not influence
the structure of the network. We use the same algorithm to
construct regular random networks �networks in which nodes
are connected randomly but have equal degree�.

We identify the largest cluster of the network using a
breadth-first search �BFS� algorithm as described in �34�.
Breadth-first search is one of the simplest algorithms for
searching a graph and the archetype for many important
graph algorithms. Given a graph G= �V ,E� and a distin-
guished source vertex s, breadth-first search systematically
explores the edges of G to record every vertex that is reach-
able from s. It computes the distance �smallest number of
edges� from s to each reachable vertex. Breadth-first search
is so named because it expands the frontier between discov-
ered and undiscovered vertices uniformly across the breadth
of the frontier. The algorithm discovers all vertices at dis-
tance r from s before discovering any vertices at distance r
+1. We use the trap as a source when running BFS and
discover the geodesic distance from the trap to every node in
the network, i.e., the number of links in the shortest path
from the trap to an arbitrary node.

Diffusion is modeled by random walks of particles, which
are independent of each other. These particles are initially
placed at random nodes on the network. We have performed
simulations, both allowing and prohibiting multiple occu-
pancy �i.e., the property of a node to be occupied by more
than one particle�. In the figures we present, multiple occu-
pancy is not allowed unless explicitly mentioned in the figure
caption. The initial particle density value was �0=0.25. We
distinguish two cases. In the first case we place a perfect trap
either on a random node and in the second case we place it
on the node with the maximum degree. We monitor the par-
ticle density ��r� with respect to the distance r from the trap,
i.e., the number of particles on all the nodes that span this
distance from the trap.

The steps of the algorithm for particle diffusion on net-
works are described as follows:

�1� We select a particle.
�2� One of its neighboring �adjacent� nodes is randomly

chosen.
�3� If multiple occupancy is not allowed and the particle

lands on an occupied node, we select another particle.
�4� If the site we chose is the trap, then the particle is

removed from the network, else it is allowed to land on the
chosen node.
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�5� After each particle on the network at a given time has
moved exactly once, one time step �Monte Carlo step
�MCS�� has been accomplished.

We typically use networks of size N=105 or N=104

�where N is the number of nodes of the network�. In the case
of N=105 we have performed 10 runs on 100 different net-
work configurations and in the case of N=104 we used 1000
different network configurations �totaling 1000 runs in both
cases�. For N=105 simulations are performed for 105 MCS
while for N=104 the time is extended to 106 MCS.

IV. RESULTS

We examine the particle distribution for the trapping re-
action by Monte Carlo simulations in regular random net-
works, in ER and in SF networks. The lines between the
points which are the simulation results in all figures are pro-
vided as a visual guide. In Fig. 1 we show ��r� in regular

random networks of N=105 and k=10 with the trap placed
on a random node. We observe here that ��r� does not de-
pend on r, the distance from the trap node. This means that
the depletion zone is completely absent.

This is a significant difference over lattices, where the
depletion zone �an area with reduced particle density� is
formed relatively fast near the trap and is existent in both
1D, 2D, and 3D lattices �19,22–25�. In regular random net-
works �Fig. 1�, however, all particles are homogeneously dis-
tributed in the network with the particle density remaining
constant for different distances and the picture remains the
same for longer times as well. In this case it is evident that
the trap has no effect in forming a density gradient in its
immediate vicinity as is the case with lattices. Here, the par-
ticle distribution is different for lattices and regular net-
works, while the particle density ��t�, which represents the
quantity of the particles, is an exponential function of time in
both cases �1,2,11,18�.

FIG. 2. Particle density ��r� vs distance r for various times. ER
networks of N=105 with �k�=10. The trap is placed on a random
node.

FIG. 3. Particle density ��r� vs distance r for t=105 MCS. ER
networks of N=105 with the trap placed on a random node. Com-
parison of networks with different values of �k�.

FIG. 4. Particle density ��r� vs distance r for t=104 MCS. ER
networks of N=104 with the trap placed on a random node. Com-
parison of networks with different values of �k� �very sparse net-
works�. Inset: ��r� vs r for an ER network of �k�=1.25 for various
times.

FIG. 1. Particle density ��r� vs distance r for various times.
Regular random networks of N=105 with k=10. The trap is placed
on a random node.
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In ER networks �Fig. 2� the picture is quite similar. Here
we perform simulations in ER networks of N=105 and �k�
=10, placing the trap on a random node. The main difference
here is the reduced particle density in nodes that are far from
the trap. These can be nodes with low degree, low between-
ness centrality, or both, since shortest path betweenness is
known to be strongly correlated with vertex degree in most
networks �10,35–37�. Particle density in these nodes is re-
duced because the particles are attracted toward the center of
the network, which includes nodes with relatively high ran-
dom walk centrality �10�.

The decrease in density far from the trap is not an effect
of the trapping but of the central nodes which attract the
particles. This, however, includes a large portion of the net-
work so the density stays fairly constant in this section. The
effect becomes more pronounced for lower values of �k�, but
is diminished for high values �Fig. 3�, approaching the be-
havior of regular random networks �Fig. 1�. However, for

very low values of �k� �i.e., close to 1�, the depletion zone
effect is recovered �Fig. 4�. We have also performed simula-
tions allowing multiple occupancy and the results are almost
the same in both cases.

In SF networks we perform simulations placing the trap
either on a random node or on the node with maximum de-
gree. The role of high connectivity nodes is evident in both
cases. The high random walk centrality of the hub is critical
to its role in the trapping reaction and the degree distribution
plays a significant role in the distribution of the particles in
the networks, recovering the depletion zone formation for
high � values, as we see below. Figures 5–8 show ��r� for
networks with N=104, with the trap placed on a random
node. Not only there is no depletion zone, but in this case we
see that the particle density is increased in the immediate
vicinity of the trap. Again, the particle distribution is differ-
ent for lattices and SF networks, while the particle density
��t� is exponential decay in lattices and very close to expo-
nential decay in SF networks �6,11�. This is an important

FIG. 5. Particle density ��r� vs distance r for various times. SF
networks of N=104 with �=2.5 and m=1. The trap placed on a
random node.

FIG. 6. Particle density ��r� vs distance r for various times. SF
networks of N=104 with �=2.5 and m=1. The trap placed on a
random node. Multiple occupancy is allowed.

FIG. 7. Particle density ��r� vs distance r for t=104 MCS. SF
networks of N=104 and m=1 with the trap placed on a random
node. Comparison of networks with different values of �.

FIG. 8. Particle density ��r� vs distance r for t=104 MCS. SF
networks of N=104 and m=2 with the trap placed on a random
node. Comparison of networks with different values of �.
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difference between lattices and SF networks, namely, that
while ��t� is the same function of time in both cases, the
particle distribution in the system is drastically different.

The increased density is a direct result of the hub attract-
ing the particles. The hub in this case plays a more important
role than the trap in the process as far as particle distribution
in the network is concerned. The effect becomes significantly
more pronounced if multiple occupancy is allowed �Fig. 6�.
The contribution of the hub is increased, the hub attracting
large number of particles, while in the case of excluded vol-
ume the particles are blocked in the hub, still allowing, how-
ever, an increased density in the immediate vicinity of the
trap.

Figure 7 shows ��r� for a fixed time for different network
connectivities. As the value of � parameter is increased the
effect of the hub is diminished, reaching a nearly homoge-
neous distribution for larger values. This may be relevant to
the fact that the largest component of the network is signifi-
cantly small for these values. To keep the network fully con-
nected we set m=2 �Fig. 8�. Here it is evident that as the

network becomes sparser �high � values, i.e., lower values of
�k��, we begin to recover the depletion zone formation. In
this case the importance of the trap in the process is in-
creased and the contribution of the hub is diminished, there-
fore, approaching the behavior of the trapping reaction in
regular lattices.

Figures 9–11 show the trapping reaction in networks with
the trap placed on the node with maximum connectivity in
SF networks of N=105. In this case, ��t� has been found to
yield a scaling with the system size drastically different than
lattices �11� and the particle distribution is also different as
revealed by our results �Fig. 12�. Again, no depletion zone is
formed near the trap and particle density is increased in the
vicinity of the trap �Fig. 9�. The increased density is not,
however, as high as in case of the trap placed randomly. This
happens because now the hub plays two roles: it both attracts
and traps the particles, so particles are being drawn toward
the trap but are removed from the system in the subsequent
time steps.

FIG. 9. Particle density ��r� vs distance r for various times. SF
networks of N=105, �=2.5, and m=1. The trap placed on the node
with the maximum degree.

FIG. 10. Particle density ��r� vs distance r for various times. SF
networks of N=105, �=2.5, and m=1. The trap placed on the node
with the maximum degree. Multiple occupancy is allowed.

FIG. 11. Particle density ��r� vs distance r for t=200 MCS. SF
networks of N=105 and m=2, with the trap placed on the node with
the maximum degree. Comparison of networks with different values
of �.

FIG. 12. Comparison of depletion zone dynamics in various
systems. 2D lattice, 3D lattice, regular random network with N
=105 and k=10, ER network with N=105 and �k�=10, SF network
with N=105 and �=2.5 with the trap placed �i� on a random node or
�ii� on the node with maximum degree.
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The ability of the hub to attract particles is increased if
multiple occupancy is allowed �Fig. 10� but the difference is
not as pronounced as in the case of a random placement of
the trap, because of its double role. Particles, however, do
reach the area of the hub easier and remain in its immediate
vicinity. If multiple occupancy is not allowed, the particles
near the hub block some of the particles trying to reach it and
the density does not fall as sharply �Fig. 9 compared with
Fig. 10�. As the network becomes sparser we begin to re-
cover the depletion zone formation, which is evident in net-
works of high � �Fig. 11�, increasing the role of the hub as a
trap and decreasing its ability to attract the particles. The
mean node degree is therefore shown to play an important
role in the depletion zone formation for the trapping process
in networks.

V. CONCLUSIONS

We have investigated the trapping reaction of a density of
particles in the presence of a single trap in complex networks
using Monte Carlo simulations for particles performing ran-
dom walks. The depletion zone near the trap, which is char-
acteristic of lattices, is absent in complex networks, while the

particle density ��t� is an exponential decay function of time
in both cases. We find that in contrast to lattices, the particles
in regular and ER networks are homogeneously distributed,
with a deviation for small values of �k� in ER networks, the
trap having no effect in forming a density gradient in its
immediate vicinity. In SF networks we reveal the important
role of high degree nodes and show that there is significant
difference if multiple occupancy is allowed. The high ran-
dom walk centrality of the hubs has a pronounced effect in
the distribution of the particles in the network. It is also
evident that connectivity of the network plays a significant
role in the distribution of the particles in both ER and SF
networks, recovering the depletion zone formation for very
sparse networks in both cases. This work complements pre-
vious results of diffusion-reaction systems where it was also
observed that the lattice effects disappear in networks, i.e.,
the absence of depletion zone and the segregation effects
�8,12,13�.
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